Hardy's uncertainty principle on hyperbolic spaces
نویسندگان
چکیده
منابع مشابه
L Versions of Hardy’s Uncertainty Principle on Hyperbolic Spaces
Hardy’s uncertainty principle states that it is impossible for a function and its Fourier transform to be simultaneously very rapidly decreasing. In this paper we prove Lp versions of this principle for the Jacobi transform and for the Fourier transform on real hyperbolic spaces.
متن کاملOrbit Spaces Arising from Isometric Actions on Hyperbolic Spaces
Let be a differentiable action of a Lie group on a differentiable manifold and consider the orbit space with the quotient topology. Dimension of is called the cohomogeneity of the action of on . If is a differentiable manifold of cohomogeneity one under the action of a compact and connected Lie group, then the orbit space is homeomorphic to one of the spaces , , or . In this paper we suppo...
متن کاملOn Generalized Uncertainty Principle
We study generalized uncertainty principle through the basic concepts of limit and Fourier transformation to analyze the quantum theory of gravity or string theory from the perspective of a complex function. Motivated from the noncommutative nature of string theory, we have proposed a UV/IR mixing dependent function δ̃(∆x,∆k, ǫ). We arrived at the string uncertainty principle from the analyticit...
متن کاملWeak Uncertainty Principle for Fractals, Graphs and Metric Measure Spaces
We develop a new approach to formulate and prove the weak uncertainty inequality, which was recently introduced by Okoudjou and Strichartz. We assume either an appropriate measure growth condition with respect to the effective resistance metric, or, in the absence of such a metric, we assume the Poincaré inequality and reverse volume doubling property. We also consider the weak uncertainty ineq...
متن کاملOn characterizations of hyperbolic harmonic Bloch and Besov spaces
We define hyperbolic harmonic $omega$-$alpha$-Bloch space $mathcal{B}_omega^alpha$ in the unit ball $mathbb{B}$ of ${mathbb R}^n$ and characterize it in terms of $$frac{omegabig((1-|x|^2)^{beta}(1-|y|^2)^{alpha-beta}big)|f(x)-f(y)|}{[x,y]^gamma|x-y|^{1-gamma}},$$ where $0leq gammaleq 1$. Similar results are extended to little $omega$-$alpha$-Bloch and Besov spaces. These obtained...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bulletin of the Australian Mathematical Society
سال: 2002
ISSN: 0004-9727,1755-1633
DOI: 10.1017/s0004972700020785